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ABSTRACT 

MITRE has been developing a Knowledge-Based Battle 
Management Testbed for  evaluating the viability of 
i n t e g r a t i n g  i n d e p e n d e n t l y - d e v e l o p e d  k n o w l e d g e -  
based decision aids in the Air Force tactical domain. 

The primary goal for  the testbed architecture is to 
permit a new system to be added to a testbed with little 
change to  the system's software. Each system that 
connects to  the testbed network declares that it can 
provide a number of  services to other systems. When 
a system wants to use another system's service, it does 
not address the server  system by name, but instead 
transmits a request to the testbed network asking for 
a particular service to be performed. 

A key component  of  the testbed architecture i s  a 
common database which uses a relational database 
management system. The RDBMS provides a database 
update  not i f icat ion serv ice  to  request ing systems.  
Normally, each system is  expected to monitor  data 
relations of interest to i t .  Alternatively, a system may 
broadcast an announcement message to inform other 
sys tems that  an event  of  potent ia l  interest  has  
o c c u r r e d .  

Current  research is aimed at deal ing with issues 
resul t ing from integrat ion efforts,  such as deal ing 
with potential mismatches of  each system's assump- 
t ions about  the  common  da tabase ,  decent ra l iz ing  
network control, and coordinating multiple agents. 

INTRODUCTION 

In tegra t ing  he te rogcneous  sof tware  sys tems is a 
burgeoning problem, par t icular ly  for the mil i tary.  
Many independent ly-developed systems produced for 
the military are stand-alone decision aids. This paper 
describes an architecture which supports thc integra- 
tion of such command and control (C2)  systems and 
discusses  the required character is t ics  which cnablc  
these systems to coopcra tc  and share  information 
with each other. 

MITRE'S Knowledge-Bascd Battle Managcmcnt Tcstbcci 
has  bccn the vehiclc for performing experimcnts in 

in tegra t ing  knowledge-based systems for  the Rome 
Air  Development  Center  (RADC) [5]. The testbed 
employs a core set of functions which provide control 
m e c h a n i s m s  and open connectivity support ,  c a l l e d  
t h e  k n o w l e d g e - b a s e d  b a t t l e  m a n a g e m e n t  ( K B -  
B A T M A N )  shell. The type of systems for which the 
tes tbed i s  in tended  are  coarse-grained,  l o o s e l y -  
coupled systems. A coarse-grained system has a large 
amount of functionality, and a loosely-coupled system 
has a high level of independence from other  systems; 
such a system does  not  require a great  deal of 
communica t ion  wi th  external agents, and can act 
autonomously most of the time. A primary goal of the 
testbed architecture has been to permit systems to b e 
able to "plug in" dynamically and even be replaceable  
by systems offering similar func t iona l i ty .  

Three realistic Air Force tactical C2 systems operate in 
the current testbed: a mission planner, a s i m u l a t o r ,  
and an intelligence analysis system. The goal of the 
testbed project has been to link these three coarse-  
grained systems using the KB-BATMAN Shell and to 
determine what problems must be addressed to assure 
effective cooperation among them. The principal w a y  
in which these three sys tems are  l inked i s  by 
relaying outputs  f rom one  sys tem,  such as  the 
in te l l igence  analyst ,  to become inputs  to another  
system, such as the mission planner. This concept of 
in tegra t ion  seems  s imple ;  however ,  a var ic ty  of  
issucs  are  involved ,  s o m e  of  which havc been 
addrcsscd during the tcstbcd project. 

The principal issucs that havc been addressed include 
how to control coopcration, how to permit conimonly- 
used information to be used by several systcms, a n d  
how to deal with dilfcrcnt views or representations of 
i n  fo  rni a t i  o n .  

BACKGROUND AND PROBLEMS 

R e l a t e d  R e s e a r c h  

I t  is difficult  to cvaluacc thc c f fcc t ivcncss  of  a 
decision a id  in isol;ltion from other  systcins  with 
which i t  m;iy inicract. Graham dcscrihcs ;I modcl for 
representing thc interaction o f  sys tems wiih their  
cnv i roil i n  cn I, w he re t tic cnv i  ron rncnt is t hc csscnt i  al 
"gluc" through which t l i c  systems intcrlici 141. 
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Graham views the environment as one more system to 
be modeled in a distributed simulation of C2 systems. 

Previous  MITRE work on t h e  AirLand Loosely 
In tegra ted  Exper t  Sys t ems  (ALLIES)  project  [ 11 
involved integrat ing an Army planning system, an 
intelligence analysis system, and a simulation system 
into a s ingle  cooperating environment. Since these 
systems were integrated after each was developed to 
operate  s tand-alone,  the methodology for  integration 
was ad hoc  and communicat ions required several  
different  protocols .  

A be t te r  envi ronment  f o r  deve loping  cooperat ing,  
d i s t r i b u t e d  s y s t e m s  i s  e s s e n t i a l  t o  e n c o u r a g e  
modularity of system design and to provide well- 
defined interfaces among systems. Teknowledge, Inc. 
has been developing ABE for RADC and the Defense 
Advanced Research Projects Agency (DARPA) to meet 
these goals [3]. ABE was not used in the testbed project 
b e c a u s e  i t  was  s t i l l  u n d e r  deve lopmen t  when 
e v a l u a t e d .  

Integrat ion of  heterogeneous decis ion aids  requires  
addressing issues involving the fields of  distributed 
comput ing ,  da tabases ,  networking,  and knowledge-  
based systems, among others. 

D i s t r i b u t e d  C o n t r o l  

In  a n y  d i s t r i b u t e d  e n v i r o n m e n t ,  c o n t r o l  of 
i n t e r s y s t e m  a c t i v i t i e s  m a y  be  c e n t r a l i z e d  o r  
decentral ized,  o r  a hybrid. Centralized control is 
easiest to implement, but also provides a single point 
ef failure,  which would not be desirable  in an 
operat ional  system in most cases .  Decentral ized 
c o n t r o l  r e q u i r e s  fa i r ly  complex  a lgor i thms f o r  
coordination of systems. We use centralized control in 
our  testbed, in part to keep the architecture simple, 
and a l so  to  suppor t  monitor ing of testbed com- 
m u n i c a t i o n s .  

C o m m o n  F u n c t i o n a l i t y  

While heterogeneous software components  should he 
l o o s e l y - c o u p l e d  to  p r e v e n t  e a c h  sys tem f rom 
becoming highly dependent  on other  systems,  there 
still  is a need for shar ing information that is not 
specific to a single system. Two common systems have 
been identified to f u l f i l l  this requirement: a Common 
Database manager  and a Common Knowledge Base 
manager. These two componcnts are considered to be 
integral parts of the KB-BATMAN Shell, although like 
other systems in the testbed, they are modules which 
can be replaced without affecting other systems. 

A relational database management system (RDBMS) is 
used for the Common Database because the functional- 
i t y  of  RDBMSs are fairly standard and implcmen- 
tations are availahlc for a wide variety of computers. 
Most properly-dcsigncd dccision aids should have an 
easily ident i f iable  set of database access funct ions 
which may be rcplaccd with RDBMS funct ions 
accessing a Common Datahasc. 

Whcn a ncw systcm is hcing intcgratcd into thc 
tcstbcd, i t  is important to dctcrrninc how i t  U S C S  a 
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database. One  problem is  to decide which d a t a  
e lements  are of interest to  other  systems in t h e  
testbed, and which data elements are for internal use 
only. A second-order problem is to ascertain how to  
translate data representations into a form that is most 
appropr ia te  for access  by mult iple  systems,  s ince 
different systems may view the same collection of  d a t a  
in d i f fe ren t  ways.  Each  system's  v i ew o f  the  
organizat ion of da ta  must  be  t ransformed to the  
Common Database's actual view. T o  solve this p r o b l e m ,  
the Common Database system must be  able to provide 
an intelligent database viewing mechanism, in which 
a database request from a system may be  translated to 
a combination of select, join, and project o p e r a t i o n s  
in order  to provide the reques ted  v iew.  T h e  
al ternat ive to providing intell igent interfaces is to 
modify the internal structure of a system, which is 
likely to be  an undesirable  option for  large-scale ,  
coarse-grained systems.  

There a re  fur ther  issues resulting f r o m  m u l t i p l e  
access to commonly-used information.  One  system 
may use a different method of representing s o m e  
entity; for example in the testbed, one system u s e s  
latitude and longitude to identify a ground location 
w h e r e a s  a n o t h e r  s y s t e m  u s e s  t h e  u n i v e r s a l  
t ransverse Mercator  coordinate  sys tem.  Also,  one  
system may be interested in greater  precis ion o r  
detail for some data  than needed by another system. 
Interpretat ion of uncertainty qualifications to data is 
likely to be d i f f icu l t  o r  imposs ib le  to  cor re la te  
between systems.  

The Common Knowledge Base includes commonly-  
needed behaviors o r  functionality for the Air  Force 
problem domain.  It can  be  used to  reduce the 
duplication of effort in component systems. It can 
also be used to enforce standard operat ing procedures  
as well as Air Force doctrine. Further work remains 
to be done on the Common Knowledge Base, partic- 
ularly for its potential role as an overall director for a 
suite of ~2 systems. 

I m p a c t  o n  Us ing  E x i s t i n g  S y s t e m s  

An early goal of the testbed project was to address the 
issue of  using existing decision aid systems. It is 
impractical to suggest that any existing system can be 
easi ly  adapted  f o r  in tegra t ion  in to  o u r  tes thed 
architecture. Systems which were not designed with 
integrat ion in mind arc  espec ia l ly  l ikely to be 
difficult to adapt. It may he more cost-effective and 
reliable to r e implemen t  a system to fit the architec- 
ture than to patch existing software. 

THE KB-BATMAN SHELL ARCHITECTURE 

M e s s a g e  P a s s i n g  

Tcsthcd components communicate with each other by 
scnding messages. Thrcc types of messages are used: 
a requcst, a reply, and a notification. A requcst 
corresponds to a the concept of  remote procedure call 
from distributed computing. A reply contains data in 
rcsponsc to a rcqucst. A notification is an an-  
nounccmcnt  which docs  not imply  that a rcply is 
c x p c c t e d .  
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A Component System 

Figure 1 

P r o c e s s e s  

Multiple processes are involved in the KB-BATM A N 
shell concept. The following types of processes are 
used 

- .. 

in the- testbed: 

The Router  
(onc process)  

Testbed Connection Monitor 
(one  process)  

Routcr  Interfaces (RIs)  
(one per hosted system) 

System Interfaces (SIs) 
(one per hosted systcm) 

System Executors 
(one per active rcqucst execution) 

Figurc 1 shows thc intcrrclat ionships  among thcse 
p r o c c s s e s  

T h c  R o u t e r  s u p p o r t s  c c n t r a l i z e d  c o n t r o l  of 
communications among hosted systcms. All messagcs 
pass through the Routcr. Figurc 2 depicts the star 
nctwork of s y s t c m s  communica t ing  through the 
R o u t c r .  

A Routcr  IntcrPacc and System Interface togcthcr  
form thc communications intcrfacc bctwccn a system 
and the Router. Thc intcrfacc consists of two parts 
bccausc thc system may cxccutc  on a different  
computcr  than the Routcr .  A systcm's  RI proccss 
cxccutcs on the samc machinc as thc Routcr; the SI 
process can opcratc on any computcr, but typically is 
associatcd with a machinc rcprcscnling thc hostcd 
system. (A hostcd systcm itself may opcratc  on 
multiplc computcrs) .  Proccsscs on both computers 
nccd IO poll for mcssagc arrival Prom ci thcr  sidc. 
cithcr from the systcm o r  thc Routcr. 

The Testbed Connection Monitor operates on the same 
computer  as the Router. I ts  purpose is to handle  
requests from systems o n  other machines to connect 
themselves into the testbed. The Connection Monitor 
asks the Router process to create an RI for the system. 
The RI and SI  then will open the necessary network 
connections to support message passing. 

Through its SI, each system declares to the Router the 
services it can perform upon request. For example, 
the Common Database system advertises that it will 
service database access  and database update notifi- 
cation requests. In addition, "declare services" is a 
built-in service handled by the Router. 

When a system's SI receives a request for one of its 
services  from another  system via the Router ,  i t  
executes  tha t  request  by evalua t ing  a func t ion  
asynchronous ly  in a s e p a r a t e  Sys t em E x e c u t o r  
process. In other words, the service request can be in 
execution while the S I  continues to poll for further 
messagcs; in fact, multiple service requests can be in 
exccution, each in a separate System Executor process. 

The Router's role is to maintain a "yellow pages" of  all 
declarcd services. It is possible that a service can be 
performed by more than one system. Whcn a system 
rcqucsts an external service, its SI sends the request 
to its RI which relays i t  to the Router. The Router 
dc tc rmines  which system is  most  appropriate  to  
pcrform the service by selccting onc from the set of 
all dcclared servers. (In the present implementation, 
no cri teria are  applied for sclect ing from mult iple  
servers. Cri ter ia  might  include speed of  response, 
accuracy of response, currency of data, etc.) The  
servicc requester does not address its request to a 
par t icular  system; in Pact, the rcqucster  docs not 
know what systcm, i f  any, will pcrform a scrvice. It is 
possiblc that a servicc is not supported, in which casc 
thc Routcr scnds an error indication as a rcply to the 
rcqucsicr. The  Routcr currcntly docs not interpret 
the contcnts of mcssagcs. 
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Communications 

Hosted 

Figure 

A System Executor process i s  created by an SI to 
perform a requested service. The System Executor can 
be considered to be performing the service in the 
context of the SI'S system since it has access to any 
functions and data of that system. System Executors 
are  implemented as reusable process resources on a 
LISP machine, so after one completes the servicing of 
a request i t  becomes eligible for reuse. 

Consider  a s i tuat ion in which a service handl ing 
system does not respond to a service request in a 
timely fashion, either due to system failure or because 
it  is busy doing other things. The requesting system 
would wait a long time or even forever unless it is 
designed to monitor for replies and eventually time 
out .  In general ,  it is preferable  for dis t r ibuted 
systems to be da ta -dr iven ,  responding to changes 
introduced by external sources (such as other systems 
or an opera tor ) ,  ra ther  than func t ion-dr iven ,  in 
which the system asks another system to perform a 
function and then waits for a response. A data-driven 
system is easier to coordinate with other systems than 
a function-driven one because i t  is reactive rather 
than dependent .  Nevertheless ,  funct ion-driven or  
servicc-oriented systcms are necessary for a varicty 
of general-purpose common funct ions that multiple 
systems may need to use, such as accessing the 
Common Database and using resource managers. 

I n p u t  Ports 

Whcn a message is transmitted from one tcstbcd 
process to another, i t  is stored in a process' input port. 
Each process other  than System Executors has one 
input port, and the process may read mcssagcs from 
the input port in any ordcr  i t  chooscs. Prcscntly, 
most processes read and process all messages i n  a 
first-in, first-out (FIFO) manncr. Ifowcvcr, a Systcm 
Executor process scans thc contcnts of thc i n p u t  port 
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of its currently associated SI for whichever replies it 
is expecting. A System Executor does not process any 
request messages, and the System Interface does not 
process any reply messages.  Each process which 
monitors a network connection for input will copy 
network input  messages  into ' i t s  input  port for  
subsequent  process ing .  

TAC-2 APPLICATION SYSTEMS 

TAC-2 is the name of thc version of  the testbed which 
incorporates  three realistic knowledge-bascd systems 
in the Air Force tactical domain: a mission planning 
system. an intelligence analysis system, and a simula- 
tion system. These three systems were developed by 
t h r e e  d i f f e r e n t  g r o u p s  of people  a t  d i f f e r e n t  
locat ions.  One,  the planning system. was undcr  
dcvelopment prior to the initiation of TAC-2. whereas 
the other two were developed expressly for use with 
TAC-2. 

Thc planning system uscd i n  TAC-2 is the Air Force 
Miss ion  Planning  sys tcm ( A M P S ) ,  which is a 
successor to the KNOBS Replanning Systcm (KRS) [ 2 ]  
which in turn was a succcssor to the Knowlcdgc Bascd 
Systcm (KNOBS).  All of thcsc systems have been 
developed by the MITRE-Bcdford Artificial  Intcl-  
ligence Tcchnical Ccntcr indcpcndcntly of thc TAC-2 
crfort underway a1 the MITRE-Washington Artificial 
Intelligcncc Technical Ccntcr. The concepts cnibod- 
ied in KRS have also led to thc current dcvclopnient of 
TEMPLAR for use as a opcrational systcni by the A i r  
F o r c e .  

AMPS was dcvclopcd as a stand-alone sysicm. and 
nonc o r  the AMPS soI'[warc was dcvclopcd f o r  usc in 
TAC-7,. t lowcvcr ,  one component o f  AMPS, iis rel- 
alional database nianagcnicnt systcm. was adapted f o r  
use as part of TAC-?'s Coninion Dalabasc sysicm. A 
n u m h c r  o f  CnhanccnicnIs wcIc mad< 10 [lie DOMS i n  
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order to support simple methods for  remote access and 
update notification. The Common Database system is 
used to manage data for all component systems in TAC- 
2.  

T h e  in te l l igence  sys tem in TAC-2,  INTEL,  was  
developed by the same staff at MITRE-Washington that 
developed TAC-2 and therefore was easiest to adapt to 
the conventions required for  inclusion in the TAC-2 
t e s tbed .  

The simulation system in TAC-2, SIMULATOR, was 
developed by staff  at the Rome Air  Development 
Center. SIMULATOR was designed to work with TAC-2, 
but included some differences with the other systems 
in assumptions about data. For example, SIMULATOR 
assumes  that location da ta  is given in universal  
t r ansve r se  M e r c a t o r  coord ina te s  whereas  A M P S  
as sumes  tha t  l oca t ion  da ta  a re  g iven  a s  la t i -  
tude/longitude pairs .  T h e  transformation between 
the two location representations is complex. How can 
systems cooperate if they have differences like this? 
An intelligent interface to the Common Database must 
transparently supply the correct data to each system. 

These three domain systcms cooperate by reading and 
writing data to the Common Database. AMPS plans 
of fens ive  counter -a i r  (OCA) missions automatically 
based on  target and other data present in the Common 
Database, built-in planning constraints, and optional 
user inputs.  T h e  Simulator simulates flying these 
missions, assessing bomb damage to the targets and 
loss of aircraft due to surface-to-air missiles (SAMs). 
The  INTEL system priorit izes targets for bombing 
mis s ions .  

All TAC-2 component systems and support software 
are written in LISP (both Common LISP and ZETALISP) 
and run on  Symbolics LISP machines. INTEL and 
SIMULATOR opera te  in the latest  version of  the 
operating system software, whereas AMPS executes in 
an earlier version. The K B - B A T M A N  shell  software 
and the Common Database system software operate in 
both  v e r s i o n s ,  u s i n g  t h e  s a m e  source  code .  
Communica t ions  be tween  LISP  machines employs  
gener ic  ne tworking  sof tware ,  and can use ei ther  
TCP/IP or Chaosnet protocols for  transmission of 
messages between a systcni and the K B - B A T M  A N 
Router.  TAC-2 can operate on as many as five 
computers, with each of the Router, Common Database, 
AMPS, INTEL, and SIMULATOR on a scparate cornputcr; 
or as few as two, with AMPS on one computcr and the 
others all on  another computer. 

SUMMARY AND CONCLUSIONS 

The  KB-BATM AN Shcll  architecture providcs support  
for  d c - 
cision aids.  The  most important aspcct o f  thc 
architccture is thc emphasis on maintaining indcpcn- 
dcncc  of sys tems.  Indcpendcnt sys tems can bc 
considcrcd more managcablc and robust than systems 
that rcly on o thcr  sys tcms for control dircctivcs.  
Indcpcndcnce  is  encouragcd  through thc use o f  
intersystem mcssagcs  which arc not addrcsscd  to 
spcc i f ic  sys tems.  Ins tead ,  nicssagcs arc  c i thcr  

in tegra t ing  c o a r s c  - g r a i n cd know I c d gc - b a sc  d 

service-oriented, to be relayed by a Router to a system 
which supports the service,  or broadcast  into the 
envi ronment  for all systcms to examine. A message 
may be nothing more than a piece of data in a shared 
Common Database,  in which case system control is  
totally data-driven. 

Another key aspect of  the architecture is the use of 
in te l l igent  interfaces to  systems. Intelligent inter-  
faces can be used to adapt data from the external 
e n v i r o n m e n t  (e.g., the Common Database) to be in a 
form su i t ab le  f o r  in te rna l  sys tem use. These  
interfaces may need to employ knowle d g e - b a s e  d 
techniques  fo r  transforming data from a c o m m o n  
rep resen ta t ion  to a specialized one  used within the 
system. If necessary, an interface can interact with 
the envi ronment  and o the r  sys tems in o rde r  t o  
support its system's needs. 

Further work is required to address issue areas such 
as decentralizing control away from a single Routcr 
and supporting componcnt  connectivit ics o ther  than 
a star nctwork. The Routcr nceds to be  extended to 
permit servers to provide qualifications for  provid ing  
a service, and on the other end, to permit servers to 
be able to preview a request to de te rmine  whcthcr i t  
is intcrested in servicing it. The la t ter  improvemen t  
would be necessary for a totally decentralized control 
mechanism such as contract nets, in which  s y s t e m s  
bid on service requests. 
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